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Abstract

Hedging barrier options is challenging. This is especially true when down-and-out puts

are considered, where the maximum payoff is reached just before a barrier is hit which

would render the claim worthless afterwards. There are several methods proposed by

the literature that try to hedge such exotic claims over their whole lifespan. However, all

methods may lead to large errors when the underlying is already close to the barrier and the

hedge portfolio can only be adjusted in discrete time intervals. Therefore, we focus solely

on this most difficult part. This is the first paper that motivates how short-term vanilla

call options may be used to dynamically hedge down-and-out puts near the barrier. We

consider a dynamic mean-variance hedging method where future option prices are obtained

through simulation techniques similar to a stochastic model predictive control approach

and compare hedge ratios and errors to a classical delta hedging strategy. Furthermore, we

differentiate between hedging discretely in continuous time and hedging in a time period

where trading is impossible (overnight gap risk). Consequently, we show in a numerical

study where we use both a geometric Brownian motion as well as a jump diffusion process

for the underlying that considering overnight gap risk significantly increases both hedge

ratios and errors compared to discrete hedging in continuous time near the barrier. We

find that short-term vanilla calls can greatly improve hedging performance especially when

gap risk is present while the inclusion of jumps only slightly increases hedging errors.

Keywords: exotic option, down-and-out put, time-discrete hedging, mean-variance hedg-

ing, Black-Scholes-model, jump-diffusion



1 Introduction

This paper analyzes time-discrete hedging of down-and-out put options near the barrier

in discrete time. These barrier options are not only traded over-the-counter, but are

also embedded in certain types of retail derivatives, for example bonus certificates (Baule

and Tallau, 2011; Hernández et al., 2008), bonus certificates plus (Hernández and Liu,

2014), flex bonus certificates (Hernández et al., 2014) or (multi) barrier reverse convert-

ibles (Wallmeier and Diethelm, 2009). Adequate hedging procedures are therefore highly

relevant for banks issuing those kind of structured products.

The payoff of down-and-out put options is discontinuous at the barrier, which make the use

of a classical delta hedging problematic when the underlying level approaches the barrier.

That is why some approaches suggest hedging exotic options by using a static portfolio

of vanilla options of that replicates the exotic payoff at maturity and is zero in case of a

barrier hit.1 However, in theory a continuum of vanilla options may be needed to set up

a static hedge for up-and-out calls or down-and-out puts. Engelmann et al. (2006) show

with empirical data that certain static hedge strategies for down-and-out puts outperform

a delta hedge in a local volatility model while some are worse. Tompkins (2002) shows in

a simulation study that neither dynamic hedging nor static hedging leads to satisfactory

results for up-and-out calls and that the variability of hedging error is even higher for

the static approach than delta hedging. It is also possible to try to combine static and

dynamic hedging (İlhan and Sircar, 2006; İlhan et al., 2008; Leung and Lorig, 2015). The

biggest challenge, however, is the need to simultaneously unwind the entire hedge portfolio

when the barrier is breached. Static hedging of these claims is thus hardly suitable when

the spot price is already close to the barrier.

Another strand of literature considers more complex models for delta hedging. An and

Suo (2009) compare the performance of delta hedging up-and-out calls on USD/EUR

for the Black and Scholes (1973) model, the jump diffusion model by Merton (1976), the

stochastic volatility model by Heston (1993) and the stochastic volatility model with jumps

by Bakshi et al. (1997). In general, the inclusion of stochastic volatility leads to better

hedging performances while adding jumps increases errors. However, it is important to

1See Derman et al. (1995) and Carr and Chou (1997) for the first approaches to static hedging in the

BS model and Nalholm and Poulsen (2006) for a unification and extension to general asset dynamics.
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note that these hedging error are averages over the whole lifespan of many up-and-out

calls. In this paper, we focus on exotic options that are close to the barrier. For short

term up-and-out calls in the money, however, An and Suo (2009) find that errors for the

Black-Scholes and the Heston models are closer together than for longer maturities or

other moneyness levels.2

One might argue the problems of a classical delta hedge can be diminished when the

hedging frequency is increased near the barrier. However, this is only possible when

there is actually a continuous trading of the underlying. On real markets, trading hours

are restricted, and the barrier can be breached over night, without the chance to take

actions.3 Furthermore, stock prices may incur discontinuous jumps also during regular

trading hours (e.g., Cont, 2001; Cont and Tankov, 2004; Ait-Sahalia and Jacod, 2009;

Kou, 2008). Thus, we consider both regular overnight jumps and stochastic jumps in our

analysis.

Even for vanilla-options, a classical delta hedge, based on the derivative ∂f
∂S of the con-

tingent claim value f with respect to the underlying, may lead to considerable hedging

errors when hedging is performed in discrete time intervals. Therefore, recent research

has focused on methods to calculate a minimum variance delta for vanilla options, which

takes a discrete hedging period into account (Vähämaa, 2004; Alexander et al., 2012; Hull

and White, 2017). Nian et al. (2018) use a market-data-driven approach, applying ker-

nel functions to determine a delta that minimizes a quadratic empirical loss function in

discrete time. However, market data of options is needed for this approach which is not

attainable for exotic options.

As outlined before, it is important to consider stochastic jumps near the barrier. With

the inclusion of jumps, markets are incomplete and exotic options are not attainable

anymore, i.e., they cannot be fully replicated by the underlying. Thus, hedging, in general,

cannot be done independently of risk preferences. In these cases quadratic hedging can

2In a similar vein, Gatheral (2006) argues that volatility is almost constant in a small time interval

when using stochastic volatility models.

3The overnight gap risk has been studied in the case of leverage certificates by Entrop et al. (2009),

Entrop et al. (2013) and Baller et al. (2016). In contrast to the down-and-out puts we consider in this

paper, leverage certificates feature embedded up-and-out puts with continuous payoffs, which are much

easier to hedge.
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be used. Risk-minimization and mean-variance approaches are two different methods in

this context. While risk-minimization needs a (non self-financing) portfolio that has a

terminal value equal to the contingent claim, mean-variance hedging uses self-financing

strategies that minimize the mean squared error (MSE) between the contingent claim at

maturity and the terminal portfolio value.4 Both methods can yield the same results as

a classical delta hedge with the underlying when it is used to hedge an attainable claim

(Pham, 2000). We use a mean-variance hedging strategy that only tries to minimize the

MSE for a short period (e.g., 1 day) and not until maturity as this is the most important

time period when the underlying is already close to the barrier and a knock out event is

likely to occur.

To be able to compute hedging errors, we simulate price changes of both exotic contingent

claim and hedge instrument using Monte Carlo simulation techniques. We assume first a

geometric brownian motion for the underlying and second a jump diffusion process. This

is similar to Bemporad et al. (2010) and Bemporad et al. (2014) where a stochastic model

predictive control technique is used resulting in the minimization of the variance of the

hedging portfolio at a discrete future point in time. The authors show that their method

outperforms delta hedging for up-and-out calls. However, they also use a European call

option in addition to the underlying as their hedge instruments. To show that their hedging

method is robust to model misspecification, they assume that the real market evolves to

the Heston (1993) model with stochastic volatility but use a Black-Scholes log-normal

model to generate future prices and show that this outperforms the usage of the “true”

Heston model parameters for scenario generation. In subsequent research Bemporad et al.

(2011) and Graf Plessen et al. (2019) also include the squared expected hedging error in

addition to hedging variance in their optimization.

We add to the literature on hedging barrier options by focusing on down-and-out puts

close to the barrier. We show that considering overnight gap risk has a significant impact

on mean-variance optimal hedge ratios compared to discrete hedging in continuous time.

Furthermore, to our knowledge, this is the first paper that uses opposite vanilla options

to dynamically hedge barrier options (i.e., vanilla calls to hedge down-and-out puts).5

4See Schweizer (2001) and Pham (2000) for more details of these methods.

5Cont et al. (2005) use a vanilla put in addition to the underlying to hedge a barrier put.
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We calculate in a numerical analysis that mean-variance hedging leads to much smaller

root mean squared errors and value-at-risks than classical delta hedging. Hedging errors

can become quite small when continuous trading is possible. However, when gap risk is

considered, hedging errors are much larger close to the barrier for all strategies. Again,

mean-variance hedging yields better results. However, using short-term vanilla call options

as hedge instruments in this case instead of the underlying can further significantly reduce

root mean squared errors. If it is possible to find a vanilla call that expires exactly after

the trading gap, RMSE and VaR can even be reduced to almost zero. We use both, a

geometric Brownian motion as well as jump diffusion process to model future prices. The

inclusion of jumps results in slightly higher hedging errors for all strategies but does not

change the gain in efficiency when using mean-variance hedging and vanilla calls.

The remainder of the paper is structured as follows: Section 2 describes the hedging

problem and our approach for down-and-out puts based on the ideas above and provides

a total of six different hedging strategies. These include no hedging, time-continuous

Black-Scholes delta hedging as well as mean variance delta hedging using the underlying

or vanilla-calls with different maturities. Section 3 shows results for a numerical analysis

of hedging errors using the aforementioned strategies in both a Black-Scholes model as

well as a Jump diffusion model. In both models we distinguish between continuous trading

and overnight gap risk during the hedge period. A short conclusion is given in Section 4.

2 The Hedging Problem

2.1 Mean-Variance Hedging

We consider a down-and-out put (dop) with strike price K, barrier H, and maturity T .

The underlying level at time t is denoted St. The payoff at maturity is given by

max(K − ST , 0)1{St≥H, t∈[0,T ]} , (1)

which means that the difference K − ST is only paid when both the underlying price is

below the strike K at maturity and the barrier B has never been hit during the lifetime

of the dop.

The main hedging problem is the discontinuity of the payoff at the barrier: The maximum

payoff is reached just before the barrier and then drops to zero (see Figure 1, dotted
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black line). As the barrier hit probability increases when the underlying level approaches

the barrier from above, the value of the down-and-out put before maturity decreases and

reaches zero at the barrier (see Figure 1, black line). Near the barrier, the likeliness of

a barrier hit causes the time value to be negative and counteract against the inner value

K − St. Accordingly, the derivative of the value with respect to the underlying level –

delta – is positive and very high near but above the barrier. Delta becomes negative for

higher underlying levels, similar to a vanilla put option, and is bounded from below by

−1. Of course, delta is zero below the barrier. Thus, delta is discontinuous at the barrier,

too (see Figure 1, dashed black line).

[Insert Figure 1 about here.]

In theory, hedging options with Black-Scholes delta should lead to a perfect hedge when

all corresponding assumptions are met. Hedging in such a way would also minimize the

variance of the hedging portfolio.6 However, trading is only possible at discrete times and

thus, price changes are discrete, too. This is especially true when the exchange closes over

night or at the weekend. When the barrier is hit at the next trading instance, the down-

and-out put is worthless. However, the hedger is still long in the underlying and faces

corresponding losses. Consequently, the Black-Scholes delta might lead to large hedging

errors. Hull and White (2017) suggest minimizing the variance of discrete-time hedging

errors. In their paper they calculate a minimum variance delta empirically for vanilla

options. We use the same idea but for down-and-out puts. Thus, our target function to

be minimized is the mean squared hedging error:

min
δ

E[(ft+∆t − ft)︸ ︷︷ ︸
:=∆ft+∆t

−δ (St+∆t − St)︸ ︷︷ ︸
:=∆St+∆t

|Ft]2 (2)

for a discrete hedging period ∆t, where ft denotes the price of the contingent claim and

St the price of the underlying at time t.

Equation (2) is similar to the minimization of quadratic hedging errors, i.e., mean variance

hedging in incomplete markets.7 The main difference is that we consider one hedging

6See e. g. Bakshi et al. (1997) p. 2034.

7First introduced by Föllmer and Sondermann (1986), see Schweizer (2001) or Pham (2000) for an

overview of quadratic hedging techniques.
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period at time t near the barrier, instead of a self-financing strategy that encompasses the

whole lifetime of the option. Hence, all market information until time t (denoted by Ft)

is available.

Equation (2) explicitly refers to the underlying itself as the hedging instrument. However,

there might be other liquidly traded instruments which are better suited. In particular,

short-termed vanilla call options with a strike identical to the barrier of the down-and-out

put option could be superior, as illustrated in Figure 1.

For a vanilla call which matures at the end of the hedging period ∆t, its payoff below the

barrier is zero, inducing a perfect hedge below the barrier. The steep positive slope of

the down-and-out put above the barrier can be closely approximated by an appropriate

number of vanilla calls. In practice, however, it is not always possible to find a vanilla call

option that expires exactly at time ∆t. Yet, vanilla calls with short maturities promise

to be a superior alternative to the underlying as the hedging instrument. We therefore

extend the minimization problem (2) to call options with maturity Tcall:

min
δ

E[∆ft+∆t − δ∆CTcallt+∆t]
2, (3)

where ∆CTcallt+∆t describes the price difference from t to t+ ∆t of the corresponding vanilla

call option.

2.2 Model Setup

In our numerical analysis, we consider a down-and-out put with strike K = 100 and barrier

H = 80. As the delta near the barrier increases when maturity comes closer, we choose

a fairly small remaining life time of T = 20 days. As the hedging period, we set ∆t = 1

day, as it is common practice to adjust the hedging portfolio on a daily basis. A Monte

Carlo simulation is used to generate prices of the underlying in t+∆t similar to Bemporad

et al. (2014). On one hand, we consider the Black-Scholes model (BS) and assume that

the underlying follows a geometric Brownian motion. On the other hand, we assume the

jump diffusion model (JD) proposed by Merton (1976) to show that (2) and (3) also work

in a more complex model setting. This is because first of all a jump event may have a

significant impact on the hedge variance and second of all it is a realistic approximation
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of simulating gap risk. Lastly, the model is also incomplete because it is not possible to

hedge the jump risk directly.

However, we analyze two different situations regarding the trading of the underlying: First,

trading continues throughout the hedging period, and the barrier can be breached at any

time between t and t+ ∆t. Second, there is no actual trading between t and t+ ∆t, and

it depends solely on the underlying level at time t+ ∆t whether the barrier is breached or

not. The second situation mimics the overnight gap risk between two trading days.8

As we are interested in the hedging performances near the barrier, we consider underlying

levels St between 80 and 82. We investigate a total of six different hedging strategies:

1. Model delta hedge δ (continuous BS / JD)

2. δS obtained by (2) using the underlying

3. δCTcall obtained by (3) using European call options with the following time to ma-

turities:

(a) 1 day (best case, when available)

(b) 5 days (normal case, weekly options are available on the German stock index

DAX)

(c) 20 days (worst case, time to maturity identical to DoP)

4. no hedging at all

8Although the usual overnight gap is less than 1 day, exchange holidays and weekends can prolong the

time gap between trading opportunities significantly. That is why 1 day seems to be a good proxy for

mean gap risk in our numerical analysis.
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3 Results

3.1 Black-Scholes Model

3.1.1 Model and Parameters

For simplicity we first assume the stock price to follow a geometric Brownian motion as

in Black and Scholes (1973) and Merton (1973). The risk-neutral price dynamic of the

underlying is given by
dSt
St

= rdt+ σBSdWt, (4)

where W is a Wiener process, r is the risk free rate and σBS the volatility.

A major advantage of the Black-Scholes model is the availability of closed-form solutions

for both vanilla European options and down-and-out put options. The price of a vanilla

European call can be calculated as

CT0,BS = S0N(d1)−Ke−rTN(d2), (5)

where

d1 =
log(S0/K) + (r + σ2

BS/2)T

σBS
√
T

,

d2 = d1 − σBS
√
T .

The price of a down-and-out put option is given by the Reiner and Rubinstein (1991)

formula:9

pdo0,BS =− S0e
−rTN(−x1) +Ke−rTN(−x1 + σBS

√
T )

+ S0e
−rTN(−x2) +Ke−rTN(−x2 + σBS

√
T

− S0e
−rT (H/S0)3N(y1) +Ke−rTH/S0)N(y1 − σBS

√
T )

+ S0e
−rT (H/S0)3N(y2) +Ke−rT (H/S0)N(y2 − σBS

√
T )

+K
(

(H/S0)
1
2

+λN(z) + (H/S0)
1
2
−λN(z − 2λσBS

√
T )
)
,

(6)

9See Reiner and Rubinstein (1991), p. 32-34 or Haug (2007), p. 152-153.
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where

x1 =
log(S0/K)

σBS
√
T

+
1

2
σBS
√
T y1 =

log(H2/(S0K))

σBS
√
T

+
1

2
σBS
√
T

x2 =
log(S0/H)

σBS
√
T

+
1

2
σBS
√
T y2 =

log(H/S0)

σBS
√
T

+
1

2
σBS
√
T

λ =

√
1

4
+

2r

σ2
BS

z =
log(H/S0)

σBS
√
T

+ λσBS
√
T .

We fix the risk-free rate at r = 0.01 and the volatility at σBS = 0.2.

3.1.2 Continuous Trading

We first consider the case (as assumed by the model) when trading continues throughout

the 1-day hedging period. For each underlying level S0, we evaluate fBS,cont0 (S0) using the

Reiner and Rubinstein (1991) formula (6). We then estimate the mean squared hedging

error (2) by simulation: We simulate 100,000 realizations of S∆t and calculate fBS∆t (S∆t).

Given these realizations, it is straightforward to calculate the MSE for arbitrary values of

δ and thus find the optimal δ. The simulation approach has the additional advantage that

it can be applied to all models we consider. In all simulations we use antithetic variates

to reduce simulation variance.

However, we need to consider the possibility that a barrier crossing happened between

t = 0 and t = ∆t. That is, even if S∆t > H it is possible that Sε < H for some ε ∈ [0,∆t].

This probability can be calculated via the Brownian bridge formula as10

π0 = exp

(
−2

(S0 −H)(S∆t −H)

S2
0σ

2
BS∆t

)
. (7)

For each simulated S∆t, we set fBS,cont∆t = 0 with probability π0.

Figure 2 shows the optimal deltas δ, the root mean squared error (RMSE), and the mean

hedging error (MHE) for each of the six hedging strategies. As expected, the classical

BS-delta δBSM becomes larger the closer the price of the underlying gets to the barrier at

H = 80. The difference between the BS-delta and the delta from mean-variance hedging

with the underlying or vanilla-call options using (2) becomes very large near the barrier

and is almost negligible further away (at S0 > 82). The very small delta near the barrier

10See e.g. Glasserman (2004).
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is to be expected as the probability of a barrier crossing is extremely likely and a high

delta would lead to a large hedging error in the event of a barrier break.11

As expected, RMSE for a Black-Scholes delta hedge are extremely high close to the barrier.

That is because the very high position in the underlying leads to a high hedging error,

as barrier hit probabilities are almost 1. In this case, even no hedging results in smaller

errors, as the value of a dop near the barrier is very small. If S0 is higher and thus barrier

hit probabilities become smaller, the reverse is true: Black-Scholes-hedging converges to

the RMSE strategies and no hedging becomes worse and worse. RMSEs for the RMSE

minimizing strategies are much smaller close to the barrier and converge at about S0 = 81.5

where errors are nearly identical in magnitude. As deltas are very small the main driver of

the hedging error is the rare event when a dop is not knocked out. The reason for this is

the steep increase in value of the pdo when no barrier crossing happens and S∆t is greater

than S0, thus making barrier crossings after t + ∆t less likely and the derivative more

expensive. At higher prices, barrier crossings are less likely an thus trying to minimize

RMSE does not yield significant error reduction anymore.

Mean hedging errors are small in comparison. Thus, variance is the dominant driver of

RMSE.

[Insert Figure 2 about here.]

Figure 3 provides further insight into the distribution of the hedging error. The up-

per graph shows the distribution for an initial underlying level 0.5% above the barrier

(S0 = 80.40). The further two graphs depict the 99%-VaR for a long and a short hedge,

respectively, depending on the initial underlying level S0. All strategies except no hedging

have their modal values close to zero. All RMSE strategies are not as fat tailed as δBS .

Regarding VaR, it is important to differentiate between a long and a short hedge of the

down-and-out put, because the source of hedging error that may result in a great loss for

the hedger is different in the two cases. The biggest source of hedging error occurs when

St+∆t < H. However, when a long down-and-out put is hedged, ∆ft+∆t− δ∆St+∆t might

be positive because ∆St+∆t < 0, which may yield a large profit for the hedger. If a short

down-and-out put is hedged instead, the hedger is long in the underlying or in a call option

11See figure 4 for a visualization of barrier hit probabilities dependent on underlying price.
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and loses from this position which might not be compensated by the gain of −∆ft+∆t.

The differences between long and short hedge VaR at the 99% level can be seen in the

middle and at the bottom of Figure 3. VaR values for δBS are worse in the continuous

world for both long and short hedging but decreases linearly for higher underlying prices.

VaR values for the other strategies start at almost zero for a long hedge. This is because

the probability of a barrier event is almost 1 in that region which results in an almost

worthless dop at time t. Hence, the loss of ∆ft+∆t is also very small. However a potential

loss of ∆ft+∆t starts to matter when the underlying price is further away from the barrier

at, resulting in a higher price of the dop at time t. The rare event of no barrier crossing

and the small deltas close to the barrier lead to high VaR values when a short hedge is

considered. That is why in this case VaR values start to decline for the RMSE strategies

as the underlying price becomes larger.

[Insert Figures 3 about here.]

3.1.3 Overnight Gap Risk

We now turn to the case when there is no trading during the hedging period. This is the

situation when the hedger sets up the hedging portfolio before the exchange closes and has

the next chance to react at the following business day. We assume the overnight trading

gap to be one calendar day, which is larger than the actual closing period between two

regular days but smaller than the weekend closing period.

For valuation purposes, we assume continuous trading after the overnight gap starting

at t = ∆t. Thus, we can proceed analogously to the continuous case to estimate the

distribution of the down-and-out put at t = ∆t. However, we cannot use the Reiner and

Rubinstein (1991) formula to calculate this value at t = 0, immediately before the exchange

closes, because this formula assumes a continuously monitored barrier, also during the

overnight gap between t = 0 and t = ∆t. This assumption would lead to an overestimation

of knock outs: If the underlying price is extremely close to the barrier, the knock-out

probability would tend to one under continuous trading. However, when the underlying

closes one cent above the barrier, it has a fair chance to jump over night to a level high

above the barrier which makes a breach less likely. Figure 4 shows the probability of
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barrier crossings between t = 0 and t = ∆t with respect to S0. Hence, an overnight gap

reduces the knock-out probability and thus increases the value of the down-and-out put.

[Insert Figures 4 about here.]

This is why we calculate the option value fBSM,gap
0 = e−r∆tE(f∆t) through Monte-Carlo

simulation.

Figure 5 summarizes the results for delta, RMSE, and MHE. The main difference to a

continuous world is that now deltas of the mean-variance strategies do not tend to zero near

the barrier. This is because now the down-and-out put value in t = 0 is significantly higher

than in a continuous setting because barrier hit probabilities are much lower (about 50%

compared to almost 100%, see Figure 4). The mean-variance delta using the underlying

is still smaller than the BS delta. δC
1

for call options that mature at the end of the

hedging period of one day is almost identical to δBSM . This is also plausible as the most

problematic scenario when S∆t is below H yields now a hedging error of zero as both the

call option and the down-and-out put have no payoff. For S∆t > H however, the option

delta is exactly 1 and thus, yields the same precision as the BS-delta for the ”good” case

of no barrier break event. δC
5

and δC
20

show nearly the same slope as δS but on a higher

level. The reason for the slope is that now C5 and C10 still have time values greater than

zero in t = ∆t in contrast to C1 which again results in a hedging error. The reason for

the higher level is that deltas of these options are less than 1. So more options are needed

to eliminate the same amount of price change risk than with the underlying as a hedging

instrument.

Using δS instead of δBSM cuts RMSE nearly in half close to the barrier, while the advantage

of δS diminishes further away and becomes nearly zero at prices higher than 82. Using

δC
1

is by far the best strategy in terms of RMSE. While it yields the same result far away

from the barrier, the error close to the barrier is very low compared to the alternatives.

δC
5

and δC20 still lead to improved performances compared to δS , but only for S0 < 81.40.

As further calculations show, the reason for this is the different change of delta, i.e., the

gamma of the vanilla calls and the down-and-out put. Gamma for vanilla options decreases

the further the underlying price is from the strike. However, for the down-and-out put,

gamma decreases until 81.40 and then starts to increase. No hedging at all leads to the

worst RMSE.
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Interestingly, RMSEs starting at about S0 = 80.20 are even smaller than in the world

without gap risk until about S0 = 81.5 where errors are nearly identical in magnitude.12

The reason for this is that on average the value of a dop in t = 0 in the gap risk world

is higher than in the continuous world as barrier hits are less likely (see figure 4). Thus,

deltas are higher resulting in smaller hedging errors when no barrier event occurs.

The mean hedging error is shown at the bottom of Figure 5. Here the order of best to worst

is the exact opposite to the order concerning RMSE. This shows the tradeoff between bias

and variance. However, all mean hedging errors are rather small considering the scale. So

most of the RMSE is again induced by the variance.

[Insert Figure 5 about here.]

Figure 6 shows the distribution of the hedging error as well as VaR values for short and

long hedging. In general, distributions seem to be more skewed as in the continuous world.

There is a clear shift of modal values depending on hedging strategy. While no hedging

results in a negative mode, the mode of δC1 is nearly zero, whereas δC5 and δC20 yield

positive modes. Also the distributions of no hedging and deltaBSM have fat tails and are

skewed to the right.

Clearly, δC1 performs best in both cases of long and short hedge value at risk. As expected,

short hedging with δBSM leads to much bigger VaR-values than long hedging. Also the

differences between hedging strategies are more severe in the former case. δS reduces

already from -4.8 to -2. However, δC
5

can again half the former result. δC1 leads to a VaR

between 0.05 (at S0 = 80.01) and 0.17 (at S0 = 82).

[Insert Figure 6 about here.]

3.2 Jump Diffusion Model

3.2.1 Model and Parameters

One problem of the Black-Scholes-Model is that it assumes the log return to be normally

distributed. However, a normal distribution cannot accurately describe the tails of em-

pirically observed distributions of stock prices (fat tails) (Fama, 1965; Cont, 2001). This

12See section 3.1.2.
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might lead to a severe underestimation of hedging errors especially near the barrier. One

way to address this issue is to allow stock prices to jump. Merton (1976) incorporates

jumps in a mixture of both continuous and jump processes. The resulting process is as

follows:
dSt
St

= (r − λκ)dt+ σMdWt + dJt, (8)

where r is the risk free rate, σM the volatility conditional on no jumps, W is a Wiener

process and J is an independent compound Poisson process that both determines and

counts the arrivals of jumps and determines the jump amplitude by a given distribution

of jump heights, which is independent of the occurrence of jumps. The probability that

n jumps occur in a small time interval dt is λdt and 1− λdt that no jumps occur, where

λ is the mean number of jumps per unit time. The probability that more than one jump

occurs in dt is therefore approximately zero. That is why (8) can be rewritten as

dSt
St

=


(α− λk)dt+ σMdWt if a jump occurs

(α− λk)dt+ σMdWt + (Yt − 1) if no jump occurs

, (9)

where Yt is the percentage change of the underlying caused by a jump and κ := E(Yt− 1)

the expectation of Yt − 1. We assume Yt to be normally distributed with parameters µJ

and σJ .

The solution of (8) is given by

St = S0e
(µ− 1

2
σ2
BS)t+σBSWt

Nt∏
j=1

Yj , (10)

with Nt counting the number of jumps until t.13

A closed-form solution is only available for vanilla European options, while exotic options,

like the down-and-out put, need to be evaluated numerically. A European call option can

be calculated as a weighted sum of BS calls as follows:

CT0,JD =

∞∑
i=0

exp(−(1 + κ)λ((1 + κ)λ)i

i!
CT0,BSi

(11)

with

CT0,BSi
= CT0,BS(r := r − λκ+ i log(1 + κ)/T, σBS := σM + i+ σ2

J/T ) (12)

13For further details see Merton (1976) or Tankov and Voltchkova (2009).
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Each BS call CT0,BSi
is conditioned on the arrival of exactly i jumps. The weights are given

by the probability that a Poisson random variable with parameter λ(1 + κ) takes value i.

For a better comparability, we want the variance of returns in the Black-Scholes setting

to equal the variance in the Jump Diffusion setting. The variance in the Jump diffusion

model is given by (Matsuda, 2004):

V arianceJD = σ2
M + λσ2

J + λµ2
J ≡ V arianceBS . (13)

We therefore set

σ2
JD = σ2

BS − λµ2
J − λσ2

J . (14)

By choosing σBS = 0.2, λ = 5, µJ = log(0.97), σJ = 0.02 we obtain σM ≈ 0.1827.

3.2.2 Continuous Trading

We use Eq. (10) to simulate Si∆t for i = 1, . . . , N = 100,000. To calculate fJD0 and f i,JD∆t ,

we use a Monte-Carlo simulation with 100,000 replications and 20 equidistant steps till

maturity per iteration. It is important to note that barrier crossings can happen between

each two time steps of each path. That is why we calculate πj according to (7) for each

time step. The probability that the barrier is still intact after the whole path is therefore

1−
∏20
j=1 πj . Multiplying this probability at the end of each path with the corresponding

payoff leads to significant reduction in discretization error.

However, we also need to take into account that barrier crossings can happen between

t = 0 and t = ∆t when simulating S∆t. As of now, f i,JD∆t is just the price of a dop when

the underlying in t = ∆t equals Si∆t without considering the path from S0 to Si∆t. That

is why we consider a total of 8 time steps in this time interval. Then we calculate
∏8
k πk

and draw a Bernoulli random number Bi that is 0 with that probability and 1 otherwise.

We then set f i,JD,cont∆t = Bi · f i,JD∆t for each i = 1, . . . , 100000.

Figures 7 and 8 summarize the results for discrete trading in continuous time in the Jump

Diffusion model. They are very similar to the results of discrete trading in the BSM-model,

but have higher deltas. MHE’s are more negative and VaR values are much worse when

using δJD to hedge.

[Insert figure 7 and 8 here.]
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3.2.3 Overnight Gap Risk

Calculation of fJD∆t is the same as in section 3.2.2. However, since no trading is possible

between t = 0 and t = ∆t, i. e. no barrier crossings are possible, fJD,gap0 is simply the

discount value of E(fJD∆t ).

Results for modeled gap risk in Merton’s jump diffusion model are shown in figures 9

and 10. The slope and order of deltas are almost identical to the corresponding BS

counterpart. The same is true for RMSE. Interestingly, hedging with δJD can now lead to

higher RMSE than no hedging very close to the barrier. The reason for this is that δJD

takes only volatility of the diffusion process into account and neglects the added volatility

due to jumps. Accordingly, volatility is too low leading to higher dop prices in the model

since vega is negative close to the barrier. Consequently, deltas are up to 0.5 higher

as in the Black-Scholes model leading to larger errors when the barrier is hit. Another

difference is that δJD now leads to lower MHE than all three call based hedging variants.

Distributions of hedge errors and VaR values are similar to gap risk in BSM, again, with

one exception: δJD performs worse in the Jump Diffusion setting than no hedging close

to the barrier.

[Insert figure 9 and 10 here.]

4 Conclusion

We implemented a mean-variance method for time-discrete hedging of down-and-out puts

near the barrier. Additionally to using the underlying we motivated the use of short-

term vanilla-call options as hedge instruments. We showed in a numerical analysis that

classical Black-Scholes delta hedging yields the worst results. In a continuous setting,

hedging performances of the other strategies are considerably better but quite similar

amongst each other and can even yield very small RMSEs. However, all proposed hedging

methods lead to higher errors when no trading during the hedge period is possible, i.e.,

when overnight gap risk is present. In these cases, discrete mean-variance hedging using

vanilla calls significantly outperforms hedging with the underlying. The performance gain

over the usage of the underlying is dependent on the call’s maturity (the closer to maturity,

the better). Results do not change significantly when jumps are included in the simulation

16



except for value-at-risk. The proposed method can easily be extended to be used with other

models (e.g., stochastic volatility, double exponential models). As up-and-out calls share

the same complexity and discontinuity at the barrier, we expect that short-term vanilla

put options can reduce hedging errors in the same manner as vanilla calls for down-and-

out puts. Whether the proposed strategies work empirically with real data is yet to be

determined. For future research and in order to obtain a feasible long term strategy for

the whole lifespan of a down-and-out put, one could try to implement a static-dynamic

hedging strategy similar to İlhan and Sircar (2006) but substituting the underlying with

a short-term vanilla call option as a dynamic instrument when the underlying is close to

the barrier.
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Figure 1. Value, corresponding Black-Scholes-delta and payoff of a down-and-out put 20 days before

maturity with strike K = 100 and barrier H = 80. Additionally, payoffs of 1, 2 and 5 vanilla European

calls with strike equal to barrier of down-and-out put are shown.
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Figure 2. Deltas, root mean squared errors and mean hedging errors of hedging a down-and-out put 20

days before maturity with strike K = 100 and barrier H = 80 for 1 trading day depending on price of the

underlying at initiation of the hedge portfolio in a Black-Scholes model with discrete hedging in continuous

time for the following different hedging strategies: Model delta (BS.orig), MSE delta using the underlying

(new.S), MSE delta using vanilla calls with time to maturity of 1 (new.C.T=1), 5 (new.C.T=5) and 20

(new.C.T=20) days as well as no hedging (unhedged).
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Figure 3. Density of hedge error 0.5 % above the barrier and 99%-Value-At-Risk for long and short hedge

of hedging a down-and-out put 20 days before maturity with strike K = 100 and barrier H = 80 for 1

trading day depending on price of the underlying at initiation of the hedge portfolio in a Black-Scholes

model with discrete hedging in continuous time for the following different hedging strategies: Model delta

(BS.orig), MSE delta using the underlying (new.S), MSE delta using vanilla calls with time to maturity of

1 (new.C.T=1), 5 (new.C.T=5) and 20 (new.C.T=20) days as well as no hedging (unhedged).
24



80.0 80.5 81.0 81.5 82.0

0.
2

0.
4

0.
6

0.
8

1.
0

Price of Underlying

B
ar

rie
r 

hi
t p

ro
ba

bi
lit

y

BS continuous
Merton continuous
BS gap risk
Merton gap risk
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down-and-out put 20 days before maturity with strike K = 100 and barrier H = 80 in a continuous (BS

continuous) and gap risk (BS gap risk) Black-Scholes model as well as a continuous (Merton continuous)
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Figure 5. Deltas, root mean squared errors and mean hedging errors of hedging a down-and-out put 20

days before maturity with strike K = 100 and barrier H = 80 for 1 trading day depending on price of

the underlying at initiation of the hedge portfolio in a Black-Scholes model with gap risk for the following

different hedging strategies: Model delta (BS.orig), MSE delta using the underlying (new.S), MSE delta

using vanilla calls with time to maturity of 1 (new.C.T=1), 5 (new.C.T=5) and 20 (new.C.T=20) days as

well as no hedging (unhedged).
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Figure 6. Density of hedge error 0.5 % above the barrier and 99%-Value-At-Risk for long and short

hedge of hedging a down-and-out put 20 days before maturity with strike K = 100 and barrier H = 80

for 1 trading day depending on price of the underlying at initiation of the hedge portfolio in a Black-

Scholes model with gap risk for the following different hedging strategies: Model delta (BS.orig), MSE delta

using the underlying (new.S), MSE delta using vanilla calls with time to maturity of 1 (new.C.T=1), 5

(new.C.T=5) and 20 (new.C.T=20) days as well as no hedging (unhedged).
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Figure 7. Deltas, root mean squared errors and mean hedging errors of hedging a down-and-out put 20

days before maturity with strike K = 100 and barrier H = 80 for 1 trading day depending on price of

the underlying at initiation of the hedge portfolio in a jump-diffusion with discrete hedging in continuous

time for the following different hedging strategies: Model delta (BS.orig), MSE delta using the underlying

(new.S), MSE delta using vanilla calls with time to maturity of 1 (new.C.T=1), 5 (new.C.T=5) and 20

(new.C.T=20) days as well as no hedging (unhedged).
28



−4 −2 0 2 4

0.
0

0.
5

1.
0

1.
5

Hedge Error at S0= 80.4

D
en

si
ty

merton.delta
new.S
new.C.T=1
new.C.T=5
new.C.T=20
unhedged

80.0 80.5 81.0 81.5 82.0

0
1

2
3

4
5

6

Price of Underlying

V
aR

merton.delta
new.S
new.C.T=1
new.C.T=5
new.C.T=20
unhedged

80.0 80.5 81.0 81.5 82.0

0
2

4
6

8

Price of Underlying

V
aR

merton.delta
new.S
new.C.T=1
new.C.T=5
new.C.T=20
unhedged

Figure 8. Density of hedge error 0.5 % above the barrier and 99%-Value-At-Risk for long and short hedge

of hedging a down-and-out put 20 days before maturity with strike K = 100 and barrier H = 80 for 1

trading day depending on price of the underlying at initiation of the hedge portfolio in a jump-diffusion

model with discrete hedging in continuous time for the following different hedging strategies: Model delta

(BS.orig), MSE delta using the underlying (new.S), MSE delta using vanilla calls with time to maturity of

1 (new.C.T=1), 5 (new.C.T=5) and 20 (new.C.T=20) days as well as no hedging (unhedged).
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Figure 9. Deltas, root mean squared errors and mean hedging errors of hedging a down-and-out put 20

days before maturity with strike K = 100 and barrier H = 80 for 1 trading day depending on price of the

underlying at initiation of the hedge portfolio in a jump-diffusion with gap risk for the following different

hedging strategies: Model delta (BS.orig), MSE delta using the underlying (new.S), MSE delta using vanilla

calls with time to maturity of 1 (new.C.T=1), 5 (new.C.T=5) and 20 (new.C.T=20) days as well as no

hedging (unhedged).
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Figure 10. Density of hedge error 0.5 % above the barrier and 99%-Value-At-Risk for long and short hedge

of hedging a down-and-out put 20 days before maturity with strike K = 100 and barrier H = 80 for 1 trading

day depending on price of the underlying at initiation of the hedge portfolio in a Merton model with gap

risk for the following different hedging strategies: Model delta (BS.orig), MSE delta using the underlying

(new.S), MSE delta using vanilla calls with time to maturity of 1 (new.C.T=1), 5 (new.C.T=5) and 20

(new.C.T=20) days as well as no hedging (unhedged).
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